Hyundai's Modular MBSE Approach to ‘Purpose Built Vehicle’ Architecture Development

Author:

Jeong Ilsoo1,Alai Shashank2,Joo Jaekop1,Baloh Michael2,Yun Sunkil1,Kim Tae Kook2,Park Hwi Seob2

Affiliation:

1. Hyundai Motor Company

2. Siemens DISW

Abstract

AbstractThis paper discusses an ongoing effort at Hyundai to develop a model‐based systems engineering (MBSE) methodology for cross‐domain vehicle architecture development that is practical at the enterprise level. Our approach follows a modular modeling process that complements MBSE. In the age of smart mobility, automobile systems are indeed interdependent elements of a system of systems (SoS). Connectedness favors numerous mobility features that emerge due to the interfaces among these constituent systems. Managing emergent product line variations, changing consumer demands coupled with faster market response require manufacturers to modularize their architecture development processes. This can help scale MBSE across vehicle programs. This study proposes a modular system architecture approach for developing Hyundai's purpose‐built vehicle (PBV) concept that maintains a link to the legacy vehicle breakdown structures already in use. Using the Arcadia method, the ‘to‐be’ developed electric vehicle is expressed as a hierarchical functional partitioning of the subsystem modules. A physical architecture is defined as a solution to the functional partitioning based on an existing vehicle breakdown in a combined ‘top‐down/bottom‐up’ workflow thus capturing a realistic system decomposition. In the SoS hierarchy, the PBV is at the top level and is partitioned into multiple levels of nested subsystem architectures owned and developed by designated module teams in a distributed modeling environment. Results of the preliminary architecture modularization effort indicate significant potential for benefits over classical architecture modeling such as iterative knowledge capture, enhanced reusability across projects, products and programs, and distributed vehicle performance development across the extended MBSE enterprise, which includes the tier 1/2 suppliers.

Publisher

Wiley

Reference34 articles.

1. Hyundai Motor Group. (2021).The Essence of Future Mobility Lifestyle.Retrieved from HMG Journal:https://www.hyundaimotorgroup.com/story/CONT0000000000005028

2. Systems engineering challenges and MBSE opportunities for automotive system design

3. Application and trend of model-based systems engineering methods for deep space exploration mission;Yu G.;Journal of Deep Space Exploration,2021

4. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature;Henderson K.;Systems Engineering,2021

5. 6.2.3 Guiding Principals for Systems Engineering Tool Deployment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3