The influence of injection pressure and exhaust gas recirculation on a VCR engine fueled by microalgae biodiesel

Author:

Galande S. D.1ORCID,Pangavhane D. R.2,Deshmukh K. B.1

Affiliation:

1. Amrutvahini College of Engineering Sangamner Maharashtra India

2. Government college of Engineering Pune Maharashtra India

Abstract

AbstractBiodiesel has been chosen as a decent alternative to diesel in the context of establishing environmentally pleasant conditions and saving petroleum‐based resources for future generations. It is well‐established that biodiesel‐powered diesel engines may achieve outcomes equivalent to those of diesel engines. The current investigation was conducted to study the effect of injection pressure (190, 210, and 230 bar) and exhaust gas recirculation (EGR) (5%, 10%, and 15%) on a single‐cylinder variable compression ratio (VCR) diesel engine running using a B20 (20% MB + 80% PD) blend of microalgae biodiesel (MABD). This experiment was conducted in two stages. During the first stage of experimentation, the efficiency and emission characteristics of a diesel engine with a B20 blend of MABD at various fuel injection pressures and fresh air were investigated. During the second phase, fresh air was mixed with 5%, 10%, and 15% exhaust gases, and the experiment was conducted. It was discovered that increasing injection pressure to 230 bar provided considerable improvements. Brake thermal efficiency increased by 2.35%, brake‐specific fuel consumption decreased by 3.57% and pollutants such as carbon monoxide (CO), hydrocarbon, and smoke were reduced by more than 50% compared to conventional diesel. These reductions were similarly significant (over 22%) as compared to the B20 blend at lower injection pressure (210 bar). However, there was a slight trade‐off: nitrogen oxide (NOx) emissions increased partially (3.14%), while exhaust gas temperature (EGT) increased by 1.72% at a higher pressure. The study then investigated the influence of EGR (5%, 10%, and 15%) at various injection pressures. The optimal value seems to be 10% EGR at 230 bar injection pressure. This combination substantially reduced NOx emissions (by over 41% compared to the normal B20 blend) and EGT (by more than 8%), while having no notable effect on other performance or emission variables. Overall, the results show that employing a B20 MABD blend with high injection pressure (230 bar) and moderate EGR (10%) improves engine performance while reducing hazardous emissions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3