AMF symbiosis drives the rhizosphere microbiome to synergistically improve herbage growth in saline–alkaline soils

Author:

Zhang Zhechao1,Ding Shengli1,Diao Fengwei12,Jia Bingbing1,Shi Zhongqi1,Guo Wei1ORCID

Affiliation:

1. Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Collaborative Innovation Center for Grassland Ecological Security Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment Inner Mongolia University Hohhot China

2. Shanxi Institute of Organic Dryland Farming Shanxi Agricultural University Taiyuan China

Abstract

AbstractPlant–microbe interactions are essential in shaping plant performance and overall ecosystem functioning. However, the regulatory mechanisms underlying plant–microbe interactions mediated by mycorrhizal symbiosis in saline–alkaline soils are still not fully understood. Here, we aimed to clarify the synergistic regulatory mechanism through which arbuscular mycorrhizal fungi (AMF) symbiosis drives the rhizosphere microbiome to improve perennial herbage growth in saline–alkaline soils and evaluate phytoremediation efficiency. This study revealed that Funneliformis mosseae inoculation (i) strongly promoted the growth of all three herbage species (with values ranging from 21.62% to 233.33%), Na+ accumulation in plants (with values ranging from 24.63% to 188.89%), and decreased soil electrical conductivity (with values ranging from 7.68% to 12.87%), potentially suggesting improved phytoremediation efficiency with AMF symbiosis; (ii) increased nutritional content and decreased C:P and N:P ratios (with values ranging from 27.20% to 92.87%) and improved K+/Na+ and P/Na+ ratios (with values ranging from 2.60% to 302.96%); (iii) increased the abundance of some beneficial bacterial taxa and strengthened the significant strong relationships among most of these bacteria and plant biomass, ion homeostasis as well as stoichiometric ratio constants, and AMF inoculation treatments also consisted the higher proportion of differential genera significantly correlated with these plant factors as well as plant nutrient contents, potentially reflecting that AMF mediated the enrichment process of beneficial bacterial taxa and may strength functional interaction between plant and bacterial taxa, which may be importance for the enhancement of saline–alkaline tolerance of plants; and (iv) enhanced stability of the rhizosphere bacterial community and complexity of interaction networks, and the related indictors also established significant correlations with plant/soil factors, suggesting that the improvement of stability and functional complexity driven by AMF may also be beneficial for enhancing phytoremediation efficiency. These findings indicate that AMF inoculation plays its own beneficial role by simultaneously activating the potential of beneficial rhizosphere bacterial taxa and that their synergistic interaction is more beneficial for enhancing plant growth in salt‐affected soils and enhancing phytoremediation efficiency. This study helps to elucidate the underlying mechanisms through which AMF‐mediated rhizosphere bacterial community improve plant growth and tolerance to saline–alkaline stresses, and provides evidence that effective ecological restoration of saline–alkaline degraded grasslands can be achieved via the use of mycorrhizal symbiosis herbage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3