Affiliation:
1. Department of Chemistry Federal University of Technology—Paraná Ponta Grossa Paraná Brazil
Abstract
AbstractA fruitful debate took place recently in literature, discussing the enhanced Diels–Alder reactivity of tropone derivatives for which the carbonyl polarity was reversed by means of umpolung. Karas et al. sustained that the umpolung increases the antiaromatic character of the ring, affecting the highest occupied molecular orbital (HOMO)/least unoccupied molecular orbital (LUMO) energies, speeding up the reaction. Tiekink et al. challenged this interpretation by sustaining that the asynchronicity of the reaction mechanisms, rather than orbital energy perturbation, was the main responsible for the smaller reaction barriers. We shed light on this dispute by computing full interaction quantum atom (IQA) and quantum theory of atoms in molecules (QTAIM) analyses over complete intrinsic reaction coordinate (IRC) paths for the Diels–Alder reaction of tropone and its umpolung derivatives, using the same systems studied by Karas et al. and Tiekink et al. Our results confirm that the asynchronicity is indeed very high for those reactions with smaller reaction barriers and offer an atom‐by‐atom and bond‐by‐bond analysis of the entire IRC pathways. Even though asynchronicity and lower reactions barriers seem to be related, antiaromaticity and lower barriers are related as well, but discussing both these interpretations does not necessarily require arguments on HOMO/LUMO energies to be invoked.
Subject
Organic Chemistry,Physical and Theoretical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献