Using deep (machine) learning to forecast US inflation in the COVID‐19 era

Author:

Stoneman David1,Duca John V.23

Affiliation:

1. Oberlin College Oberlin Ohio USA

2. Department of Economics Oberlin College Oberlin Ohio USA

3. Federal Reserve Bank of Dallas Dallas Texas USA

Abstract

AbstractThe 2021–2022 surge in US inflation was unanticipated by the Survey of Professional Forecasters (SPF) and other macroeconomists and institutions. This study assesses whether nascent deep learning frameworks and methods more accurately project recent core personal consumption expenditures inflation. We create a recurrent neural network (RNN) to forecast long‐term inflation, and after training on 60 years of quarterly data, the model outperforms the SPF and projects a spike in inflation similar to that of recent years. We compare the model's performance with and without COVID‐19–specific data and discuss some implications of our findings for economic forecasting in global crises.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3