Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia

Author:

Leiva‐Dueñas Carmen1ORCID,Graversen Anna Elizabeth Løvgren1ORCID,Banta Gary T.2ORCID,Holmer Marianne2ORCID,Masque Pere345ORCID,Stæhr Peter Anton Upadhyay6ORCID,Krause‐Jensen Dorte1ORCID

Affiliation:

1. Department of Ecoscience Aarhus University Aarhus C Denmark

2. Department of Biology University of Southern Denmark Odense M Denmark

3. School of Science and Centre for Marine Ecosystems Research Edith Cowan University Joondalup Western Australia Australia

4. International Atomic Energy Agency Marine Environmental Laboratories Principality of Monaco Monaco

5. Departament de Física and Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Bellaterra Spain

6. Department of Ecoscience Aarhus University Roskilde Denmark

Abstract

AbstractThe ability of seagrass meadows to filter nutrients and capture and store CO2 and nutrients in the form of organic carbon (OC) and nitrogen (N) in their sediments may help to mitigate local eutrophication as well as climate change via meadow restoration and protection. This study assesses OC and N sediment stocks (top 50 cm) and sequestration rates within Danish eelgrass meadows. At four locations, eelgrass‐vegetated and nearby unvegetated plots were studied in protected and exposed areas. The average OC and N sediment 50 cm stocks were 2.6 ± 0.3 kg OC m−2 and 0.23 ± 0.01 kg N m−2, including vegetated and unvegetated plots. In general, OC and N stocks did not differ significantly between eelgrass meadows and unvegetated sediments. Lack of accumulation of excess 210Pb suggested sediment erosion or low rates of sediment accumulation at most sites. OC accumulation rates ranged from 6 to 134 g m−2 yr−1 and N from 0.7 to 14 g m−2 yr−1. Generalized additive models showed that ≥ 80% of the variation in sediment OC and N stocks was explained by sediment grain size, organic matter source, and hydrodynamic exposure. Long cores, dated with 210Pb, showed declining OC and N densities toward present time, suggesting long‐term declines in eelgrass OC and N pools. Estimates of potential nation‐wide OC and N accumulation in eelgrass sediments show that they could annually capture up to 0.7% ± 0.5% of CO2 emissions and 6.9% ± 5.2% of the total terrestrial N load.

Funder

Australian Research Council

Velux Fonden

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3