Influence of environmental pH on the interaction properties of WP‐EGCG non‐covalent nanocomplexes

Author:

Zhang Shuangling1ORCID,Dongye Zixuan1,Wang Li1,Li Zhenru1,Kang Mengchen1,Qian Yaru1,Cheng Xiaofang1,Ren Yuhang1,Chen Chengwang1

Affiliation:

1. College of Food Science & Engineering Qingdao Agricultural University Qingdao P. R. China

Abstract

AbstractBACKGROUNDWhey protein‐epigallocatechin gallate (WP‐EGCG) covalent conjugates and non‐covalent nanocomplexes were prepared and compared using Fourier‐transform infrared spectra. The effect of pH (at 2.6, 6.2, 7.1, and 8.2) on the non‐covalent nanocomplexes' functional properties and the WP‐EGCG interactions were investigated by studying antioxidant activity, emulsification, fluorescence quenching, and molecular docking, respectively.RESULTSWith the formation of non‐covalent and covalent complexes, the amide band decreased; the ‐OH peak disappeared; the antioxidant activity of WP‐EGCG non‐covalent complexes was 2.59‐ and 2.61‐times stronger than WP‐EGCG covalent conjugates for 1‐diphenyl‐2‐picryl‐hydrazyl (DPPH) and ferric reducing ability of plasma (FRAP), respectively (particle size: 137 versus 370 nm). The antioxidant activity (DPPH 27.48–44.32%, FRAP 0.47–0.63) was stronger at pH 6.2–7.1 than at pH 2.6 and pH 8.2 (DPPH 19.50% and 26.36%, FRAP 0.39 and 0.41). Emulsification was highest (emulsifying activity index 181 m2 g−1, emulsifying stability index 107%) at pH 7.1. The interaction between whey protein (WP) and EGCG was stronger under neutral and weakly acidic conditions: KSV (5.11–8.95 × 102 L mol−1) and Kq (5.11–8.95 × 1010 L mol s−1) at pH 6.2–7.1. Binding constants (pH 6.2 and pH 7.1) increased with increasing temperature. Molecular docking suggested that hydrophobic interactions played key roles at pH 6.2 and pH 7.1 (H > 0, S > 0). Hydrogen bonding was the dominant force at pH 2.6 and pH 8.2 (H < 0, S < 0).CONCLUSIONEnvironmental pH impacted the binding forces of WP‐EGCG nanocomplexes. The interaction between WP and EGCG was stronger under neutral and weakly acidic conditions. Neutral and weakly acidic conditions are preferable for WP‐EGCG non‐covalent nanocomplex formation. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3