Combination of suitable planting density and nitrogen rate for high yield maize and their source–sink relationship in Northwest China

Author:

Wu Xuanyi12ORCID,Tong Ling12,Kang Shaozhong12,Du Taisheng12,Ding Risheng12,Li Sien12,Chen Yang12

Affiliation:

1. Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering China Agricultural University Beijing China

2. National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province Wuwei China

Abstract

AbstractBACKGROUNDIncreasing crop yield per unit area by increasing planting density is essential to ensure food security. However, the optimal combination of planting density and nitrogen (N) application for high‐yielding maize and its source–sink characteristics need to be more clearly understood.RESULTSA 2‐year field experiment was conducted combining three planting densities (D1: 70 000 plants ha−1; D2: 100 000 plants ha−1; D3: 130 000 plants ha−1) and three nitrogen rates (N1: 150 kg hm−2; N2: 350 kg hm−2; N3: 450 kg hm−2). The results showed that increasing planting density significantly increased leaf area index and grain yield but negatively affected ear traits. The Richards model was used to fit the dynamic changes of dry matter accumulation of maize under different treatments, and the fitting results were good. Increasing planting density increased population yield while limiting the development of individual plants, bringing the period of rapid dry matter accumulation to an early end and accelerating leaf senescence. An appropriate nitrogen rate could prolong the period of rapid accumulation of dry matter in maize, and increase the 100‐kernel weight. Increasing planting density enhanced post‐silking dry matter accumulation to a lesser extent, and the source–sink relationship of the maize population gradually developed from sink limitation to source limitation with increasing planting density.CONCLUSIONThe decrease in yield due to the insufficient source strength to meet the sink demand at too high densities was the reason that limited further improvement of the optimal planting density. An appropriate nitrogen rate facilitated the realization of yield potential at high density. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3