Design and optimization of 30 kW CLLLC resonant converter for vehicle‐to‐grid applications

Author:

Tian Donghao1ORCID,Tang Yu1ORCID,Shi Zhe1

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin China

Abstract

AbstractThe CLLLC resonant converter is a promising technology for electric vehicles and microgrids due to its ability to operate bidirectionally. This article presents a design of a bidirectional CLLLC resonant converter that is applied in the vehicle‐to‐grid (V2G). The battery side of the converter uses a two‐channel parallel structure to enhance its efficiency and reliability. In contrast, the DC‐bus side uses a transformer series structure to obtain the benefits of passive current sharing on the secondary side and reduce the transformer turns ratio. By utilizing the proposed design method, the converter can achieve a wide input and output voltage range, high efficiency, and high power density. The article analyzes the working principle of the converter and explains the design process, which includes the transformer turns ratio, magnetizing inductance, and resonance parameters. Finally, an experimental prototype is produced to verify the theory's validity and the design's feasibility. The prototype has a DC‐bus side voltage of 660–860 V, a battery side voltage of 250–500 V, and a maximum power output of 30 kW. The peak efficiency of the prototype is 98.2%, and its power density can reach up to 8 kW/L.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3