Measuring the advantages of contemporaneous aggregation in forecasting

Author:

Li Zeda1ORCID,Wei William W. S.2

Affiliation:

1. Paul H. Chook Department of Informartion System and Statistics, Baruch College The City University of New York New York New York USA

2. Department of Statistics, Operations, and Data Science Temple University Philadelphia Pennsylvania USA

Abstract

AbstractSuppose an underlying multivariate time series is contemporaneously aggregated under a known aggregation mechanism, and a lower dimensional multivariate aggregated time series is obtained. To forecast the aggregated time series, one could consider two general strategies: first, aggregate the forecasts of the underlying time series; second, forecast the aggregated time series directly. Intuitively, the first strategy should be more accurate, as the underlying time series contains more comprehensive information than the aggregated time series. However, the model‐building process and estimation procedure for the higher dimensional underlying multivariate time series are more complex compared with that for the lower dimensional aggregated time series, which may increase the chances of model misspecification and result in larger estimation errors. Therefore, it may be preferable to forecast the aggregated time series directly. It is then crucial to measure the relative precision between the two forecasting strategies in practice. To this end, we introduce a forecasting measure to quantify the advantages of using contemporaneous aggregation in forecasting in the sense of the mean‐squared error. The forecasting measure is constructed under the assumption that the underlying time series follows the vector autoregressive moving average (VARMA) process. The estimation procedure does not require specifying any particular form of the VARMA, namely, the lag order and . Asymptotic properties of the estimation procedure are established, and we evaluate the finite‐sample performance of the proposed method through Monte Carlo simulations and a real data example.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3