Heat shock transcription factor 1 facilitates liver cancer progression by driving super‐enhancer‐mediated transcription of MYCN

Author:

Liu Yizhe1,Shi Qili1,Su Yue1,Chen Zhiao123,He Xianghuo123ORCID

Affiliation:

1. Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology Shanghai Medical College, Fudan University Shanghai China

2. Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center Fudan University Shanghai China

3. Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center Fudan University Shanghai China

Abstract

AbstractBackgroundHeat shock transcription factors (HSFs) play crucial roles in the development of malignancies. However, the specific roles of HSFs in hepatocellular carcinoma (HCC) have yet to be fully elucidated.Aims:To explore the involvement of the HSF family, particularly HSF1, in the progression and prognosis of HCC.Materials & MethodsWe conducted a thorough analysis of HSF expression and copy number variations across various cancer datasets. Specifically focusing on HSF1, we examined its expression levels and prognostic implications in HCC. In vitro and in vivo experiments were carried out to evaluate the impact of HSF1 on liver cancer cell proliferation. Additionally, we utilized CUT&Tag, H3K27 acetylation enrichment, and RNA sequencing (RNA‐seq) to investigate the super‐enhancer (SE) regulatory landscapes of HSF1 in liver cancer cell lines.ResultsHSF1 expression is elevated in HCC and is linked to poor prognosis in several datasets. HSF1 stimulates liver cancer cell proliferation both in vitro and in vivo, partly through modulation of H3K27ac levels, influencing enhancer distribution. Mechanistically, our findings demonstrate that HSF1 transcriptionally activates MYCN expression by binding to its promoter and SE elements, thereby promoting liver cancer cell proliferation. Moreover, increased MYCN expression was detected in HCC tumors and correlated with unfavorable patient outcomes.DiscussionOur study sheds light on previously unexplored aspects of HSF1 biology, identifying it as a transcription factor capable of shaping the epigenetic landscape in the context of HCC. Given HSF1's potential as an epigenetic regulator, targeting the HSF1‐MYCN axis could open up new therapeutic possibilities for HCC treatment.ConclusionThe HSF1‐MYCN axis constitutes a transcription‐dependent regulatory mechanism that may function as both a prognostic indicator and a promising therapeutic target in liver cancer. Further exploration of this axis could yield valuable insights into novel treatment strategies for HCC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3