Chrysanthemum as a remarkable edible flower resource with anti‐glycation effects: Representative variety differences, phenolic compositions, and the interaction mechanism

Author:

Wang Zhangtie12,Zhu Yuhang12,Xu Minjun3,Peng Kejie12,Shi Binhai3,Wang Yixuan12,Chen Qi12,Huang Weisu14,Chen Yidan12,Lu Baiyi12ORCID

Affiliation:

1. College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro‐Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro‐Products Storage and Preservation of Ministry of Agriculture and Rural Affairs Zhejiang University Hangzhou China

2. ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China

3. China Innovation Center Shiseido China Co., Ltd. Shanghai China

4. Department of Applied Technology Zhejiang Economic & Trade Polytechnic Hangzhou China

Abstract

AbstractVarious edible chrysanthemum flowers possess different anti‐glycation effects due to various compositions; however, the interaction mechanism is unclear. Our study aimed to compare the anti‐glycation effects of different edible chrysanthemum flowers and investigate the effect of phenolic compounds among them. The bovine serum albumin (BSA)‐glucose model was used for evaluating anti‐glycation effects of various chrysanthemums flowers, and C. HBJ, C. TJ, and C. JSHJ showed better anti‐glycation effects compare to aminoguanidine. Seventeen phenolic compounds were detected, and characteristic compounds were identified via omics analysis. The interactions between BSA and different phenolic acids were analyzed by molecular docking, and the anti‐glycation model was used for further verification. In this way, apigetrin, chlorogenic acid, neochlorogenic acid, quercetin‐3β‐d‐glucoside, and afzelin were identified. They were proved to affect the secondary structure of proteins due to excellent hydrophobic interactions. Our results identified the chrysanthemum species with the most promising anti‐glycation effect as well as their representative phenolic compounds. The binding of phenolic compounds and BSA due to hydrophobic interactions and hydrogen bonds might contribute to their anti‐glycation activities. Overall, our research is helpful for designing edible flower products with anti‐glycation functions and providing a better understanding of the structure–function relationship.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3