Depletion of soluble cytokines unlocks the immunomodulatory bioactivity of extracellular vesicles

Author:

Roux Quentin12ORCID,Boiy Robin12,De Vuyst Felix12,Tkach Mercedes3,Pinheiro Claudio12ORCID,de Geyter Sofie12,Miinalainen Ilkka4,Théry Clotilde3ORCID,De Wever Olivier12,Hendrix An12

Affiliation:

1. Laboratory of Experimental Cancer Research, Department of Human Structure and Repair Ghent University Ghent Belgium

2. Cancer Research Institute Ghent Ghent Belgium

3. Institute Curie PSL Research University, INSERM U932 Paris France

4. Biocenter Oulu University of Oulu Oulu Finland

Abstract

AbstractDespite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size‐exclusion chromatography (DG‐SEC), differential ultracentrifugation (dUC) and/or stand‐alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer‐associated fibroblasts (CAF). EV‐enriched but protein‐depleted versus EV‐depleted but protein‐enriched DG‐SEC fractions, and EV‐containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose‐dependently evaluated for monocyte‐derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG‐SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF‐A and MCP‐1 and potently stimulated MoDC maturation. In contrast, EV‐containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose‐dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method‐dependent off‐target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.

Funder

Universiteit Gent

Publisher

Wiley

Subject

Cell Biology,Histology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3