A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States
Author:
Affiliation:
1. Department of Biological and Environmental Engineering; Cornell University; Ithaca New York USA
2. Department of Civil and Environmental Engineering; University of Massachusetts; Amherst Massachusetts USA
Funder
Department of Interior Northeast Climate Science Center
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016WR019605/fullpdf
Reference104 articles.
1. Role of watershed geomorphic characteristics on flooding in Indiana, United States;Ahn;J. Hydrol. Eng.,2015
2. The effect of land cover change on duration and severity of high and low flows;Ahn;Hydrol. Processes,2016
3. Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique;Ahn;J. Hydrol.,2016a
4. Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut river basin;Ahn;Hydrol. Processes,2016b
5. Twentieth-century drought in the conterminous United States;Andreadis;J. Hydrometeorol.,2005
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The right superior temporal gyrus plays a role in semantic-rule learning: Evidence supporting a reinforcement learning model;NeuroImage;2023-11
2. Decomposing the impacts of climate change and human activities on runoff changes in the Yangtze River Basin: Insights from regional differences and spatial correlations of multiple factors;Journal of Hydrology;2022-12
3. Assessment of Suitable Gridded Climate Datasets for Large-Scale Hydrological Modelling over South Korea;Remote Sensing;2022-07-23
4. A Hidden Climate Indices Modeling Framework for Multivariable Space‐Time Data;Water Resources Research;2021-12-28
5. Spatial-temporal multivariate semi-Bayesian hierarchical framework for extreme precipitation frequency analysis;Journal of Hydrology;2021-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3