HIPK2 mediates M1 polarization of microglial cells via STAT3: A new mechanism of depression‐related neuroinflammation

Author:

Han Chenyang1ORCID,Pei Hongyan2,Sheng Yongjia1,Wang Jin1,Zhou Xiaohong1,Li Wenyan1,Zhang Caiqun3,Guo Li4,Yang Yi1

Affiliation:

1. Department of Pharmacy The Second Affiliated Hospital of Jiaxing University Jiaxing China

2. College of Chinese Medicinal Materials Jilin Agricultural University Changchun China

3. Department of Neurology The Second Affiliated Hospital of Jiaxing University Jiaxing China

4. Department of Center Laboratory The Second Affiliated Hospital of Jiaxing University Jiaxing China

Abstract

AbstractThis study aimed to investigate the role of protein kinase HIPK2 in depression and its associated mechanism. The chronic unpredictable mild stress (CUSM) model was constructed to simulate mice with depression to detect the mouse behaviors. Moreover, by using mouse microglial cells BV2 as the model. After conditional knockdown of HIPK2, the depressive behavior disorder of mice was improved, meanwhile, neuroinflammation was alleviated, and the M1 cell proportion was reduced. Similar results were obtained after applying the HIPK2 inhibitor tBID or ASO‐HIPK2 treatment. HIPK2 was overexpressed in BV2 cells, which promoted M1 polarization of cells, while tBID suppressed the effect of HIPK2 and reduced the M1 polarized level in BV2 cells. Pull‐down assay results indicated that HIPK2 bound to STAT3 and promoted STAT3 phosphorylation. We found that HIPK2 can bind to STAT3 to promote its phosphorylation, which accelerates M1 polarization of microglial cells, aggravates the depressive neuroinflammation, and leads to abnormal behaviors. HIPK2 is promising as the new therapeutic target of depression.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protein modifications and diseases;Journal of Cellular Physiology;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3