Probing gas phase catalysis by atomic metal cations with flow tube mass spectrometry

Author:

Blagojevic Voislav12,Koyanagi Gregory K.1,Böhme Diethard K.1

Affiliation:

1. Department of Chemistry York University Ontario Toronto Canada

2. BrightSpec Inc. Virginia Charlottesville USA

Abstract

AbstractThe evolution and applications of flow tube mass spectrometry in the study of catalysis promoted by atomic metal ions are tracked from the pioneering days in Boulder, Colorado, to the construction and application of the ICP/SIFT/QqQ and ESI/qQ/SIFT/QqQ instruments at York University and the VISTA‐SIFT instrument at the Air Force Research Laboratory. The physical separation of various sources of atomic metal ions from the flow tube in the latter instruments facilitates the spatial resolution of redox reactions and allows the separate measurement of the kinetics of both legs of a two‐step catalytic cycle, while also allowing a view of the catalytic cycle in progress downstream in the reaction region of the flow tube. We focus on measurements on O‐atom transfer and bond activation catalysis as first identified in Boulder and emphasize fundamental aspects such as the thermodynamic window of opportunity for catalysis, catalytic efficiency, and computed energy landscapes for atomic metal cation catalysis. Gas‐phase applications include: the catalytic oxidation of CO to CO2, of H2 to H2O, and of C2H4 to CH3CHO all with N2O as the source of oxygen; the catalytic oxidation of CH4 to CH3OH with O3; the catalytic oxidation of C6H6 with O2. We also address the environmentally important catalytic reduction of NO2 and NO to N2 with CO and H2 by catalytic coupling of two‐step catalytic cycles in a multistep cycle. Overall, the power of atomic metal cations in catalysis, and the use of flow tube mass spectrometry in revealing this power, is clearly demonstrated.

Publisher

Wiley

Subject

Spectroscopy,General Biochemistry, Genetics and Molecular Biology,Condensed Matter Physics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3