A mass defect–based approach for the automatic construction of peak lists for databases of mass spectra with limited resolution: Application to time‐of‐flight secondary ion mass spectrometry data

Author:

Daoudi Mouad12ORCID,Nuns Nicolas3,Schiffmann Philipp2,Frobert Arnaud2,Hanoune Benjamin1,Desgroux Pascale1,Faccinetto Alessandro1ORCID

Affiliation:

1. Univ. Lille, CNRS, UMR 8522 ‐ PC2A ‐ Physicochimie des Processus de Combustion et de l’Atmosphère Lille France

2. IFP Energies Nouvelles Institut Carnot IFPEN TE Rueil‐Malmaison France

3. Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 – IMEC – Institut Michel‐Eugène Chevreul Lille France

Abstract

RationaleThis study has developed a data processing protocol based on mass defect analysis for the automatic construction of unique peak lists addressing the need for the fast and efficient treatment of databases of mass spectra with limited mass resolution.MethodsThe data processing protocol, implemented in MATLAB, is tested on a database of 126 mass spectra obtained from time‐of‐flight secondary ion mass spectrometry analysis of the exhaust of a laboratory diesel miniCAST burner deposited on Ti substrates.ResultsThe data processing protocol converts the mass spectra into a data matrix suitable for chemometrics (peak list) by combining mass defect analysis and multivariate analysis. In particular, the role of the mass defect analysis is expanded to improve mass calibration and automate the construction of the peak list.ConclusionsIn this context, mass defect analysis becomes an invaluable technique for the efficient processing of databases of mass spectra with limited mass resolution by allowing the fast and automated construction of a peak list common to all mass spectra, by improving the mass calibration, and finally by reducing the number of molecular formulae consistent with a given accurate mass, thus facilitating the identification of unknown ions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3