Affiliation:
1. College of Chemistry and Chemical Engineering Qiqihar University Qiqihar People's Republic of China
2. Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University Qiqihar People's Republic of China
Abstract
AbstractThe frequent outbreaks of the AIDS (Acquired Immune Deficiency Syndrome) pandemic and the limited availability of anti‐Human Immunodeficiency Virus (HIV) drugs highlight the urgent need to develop new antiviral drugs. A detailed understanding of the interactions between TAR‐Binding Proteins (TBP) and RNA will facilitate the discovery of new anti‐AIDS drugs. In order to characterize and explore the key interactions between RNA and TBP, we focused on the wild type (WT) and three mutant TBPs (TBP6.9, TBP6.7, and TBP6.3) with RNA, multiple molecular dynamics simulation and energy computation were performed. The results showed that 12 key residues played a major role in the interaction between TBP and RNA. The mutated residues of TBP changed the interaction between their surrounding residues and RNA, thus affecting the binding of TBP to RNA. In addition, structural and energy analyses showed that in contrast with WT TBP‐RNA complex, the mutated residues had little effect on the backbone structure of TBP, but changes in the van der Waals interactions and electrostatic interaction associated with the side chains are responsible for the altered the binding between three mutant TBPs and RNA complexes. The discovery of TBP‐RNA recognition mechanism in our work provides some useful insights and new opportunities for the development of anti‐aids drugs.
Subject
Computational Mathematics,General Chemistry