Solvation free energy arithmetic for small organic molecules

Author:

Lazaric Aleksandar1,Pattni Viren1,Fuegner Kaprao1,Ben‐Naim Arieh2,Heyden Matthias1ORCID

Affiliation:

1. School of Molecular Sciences Arizona State University Tempe Arizona USA

2. Department of Physical Chemistry Hebrew University of Jerusalem Jerusalem Israel

Abstract

AbstractSolvent‐mediated interactions contribute to ligand binding affinities in computational drug design and provide a challenge for theoretical predictions. In this study, we analyze the solvation free energy of benzene derivatives in water to guide the development of predictive models for solvation free energies and solvent‐mediated interactions. We use a spatially resolved analysis of local solvation free energy contributions and define solvation free energy arithmetic, which enable us to construct additive models to describe the solvation of complex compounds. The substituents analyzed in this study are carboxyl and nitro‐groups due to their similar sterical requirements but distinct interactions with water. We find that nonadditive solvation free energy contributions are primarily attributed to electrostatics, which are qualitatively reproduced with computationally efficient continuum models. This suggests a promising route for the development of efficient and accurate models for the solvation of complex molecules with varying substitution patterns using solvation arithmetic.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3