An extended PDE‐based statistical spatio‐temporal model that suppresses the Gibbs phenomenon

Author:

Wei Guanzhou1,Liu Xiao1,Barton Russell2

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta Georgia USA

2. Smeal College of Business The Pennsylvania State University State College Pennsylvania USA

Abstract

AbstractPartial differential equation (PDE)‐based spatio‐temporal models are available in the literature for modeling spatio‐temporal processes governed by advection‐diffusion equations. The main idea is to approximate the process by a truncated Fourier series and model the temporal evolution of the spectral coefficients by a stochastic process whose parametric structure is determined by the governing PDE. However, because many spatio‐temporal processes are nonperiodic with boundary discontinuities, the truncation of Fourier series leads to the well‐known Gibbs phenomenon (GP) in the output generated by the existing PDE‐based approaches. This article shows that the existing PDE‐based approach can be extended to suppress GP. The proposed approach starts with a data flipping procedure for the process respectively along the horizontal and vertical directions, as if we were unfolding a piece of paper folded twice along the two directions. For the flipped process, this article extends the existing PDE‐based spatio‐temporal model by obtaining the new temporal dynamics of the spectral coefficients. Because the flipped process is spatially periodic and has a complete waveform without boundary discontinuities, GP is removed even if the Fourier series is truncated. Numerical investigations show that the extended approach improves the modeling and prediction accuracy. Computer code is made available on GitHub.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecological Modeling,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3