Ternary system based on polyaniline, graphene, and acrylic matrix applied to thermoelectric systems

Author:

Costa Ana Clara Soares1ORCID,Furtado Clascídia Aparecida2,Oréfice Rodrigo Lambert1

Affiliation:

1. Department of Metallurgical and Materials Engineering Universidade Federal de Minas Gerais Belo Horizonte Brazil

2. Center for Nuclear Technology Development The National Nuclear Energy Commission Belo Horizonte Brazil

Abstract

AbstractThermoelectric (TE) materials have attracted attention for offering a green option for power generation, due to their ability to convert thermal energy into electricity. In recent years, a promising way to achieve efficiency in TE properties has been proposed based on composites of conjugated polymers, such as polyaniline (PANI), and carbon nanomaterials such as graphene (GR). Since polyaniline and GR composites are promising fillers for organic thermoelectric materials (OTE), we expanded their investigations for a ternary system (TS), providing materials with multiple functionalities, and high performance. In this research work, a TS based on an acrylic matrix (ACR), GR, and PANI was successfully prepared through the combination of in situ polymerization of aniline in contact with GR and mechanical mixture of the resulting hybrid with an ACR. Structural and morphological characterization confirmed that GR affected PANI morphology and crystallinity. The band gap determination by Tauc's relation indicated the occurrence of π‐π interaction between the chains and an increase of the electrical conductivity of the composites allowed to infer a synergistic effect. The measured Seebeck coefficient reached a maximum value of −17.02 μVK−1 and the highest power factor obtained was 4.94 μWm−1 K−2 for the ACR/PANI sample, indicating a material with promising thermoelectric properties.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3