A shift from individual species to ecosystem services effect: Introducing the Eco‐indicator Sensitivity Distribution (EcoSD) as an ecosystem services approach to redefining the species sensitivity distribution (SSD) for soil ecological risk assessment

Author:

Fajana Hamzat O.12ORCID,Lamb Eric G.3,Siciliano Steven D.12

Affiliation:

1. Toxicology Centre University of Saskatchewan Saskatoon Saskatchewan Canada

2. Department of Soil Science University of Saskatchewan Saskatoon Saskatchewan Canada

3. Department of Plant Science University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractIncorporating the ecosystem services (ES) approach into soil ecological risk assessment (ERA) has been advocated over the years, but implementing the approach in ERA faces some challenges. However, several researchers have made significant improvements to the soil ERA, such as applying the species sensitivity distribution (SSD) to discern chemical effects on the soil ecosystem. Despite the considerable contributions of SSD to ERA, SSD fails to relate chemical impact on individual species to ES and account for functional redundancy as well as soil ecosystem complexity. Here, we introduce the Eco‐indicator Sensitivity Distribution (EcoSD). An EcoSD fits ecological functional groups and soil processes, termed “eco‐indicators,” instead of individual species responses to a statistical distribution. These eco‐indicators are related directly to critical ecosystem functions that drive ES. We derived an EcoSD for cadmium as a model chemical and estimated a soil ecosystem protection value (EcoPVSoil) based on the eco‐indicator dataset for cadmium from the literature. The EcoSD identified nitrogen cycling as the critical process disrupted by cadmium. A key advantage of EcoSD is that it identifies key ecological and chemical indicators of an ES effect. In doing so, it links chemical monitoring results to sensitive ecological functions. The estimated EcoPVSoil for cadmium was slightly more protective of the soil ecosystem than most regional soil values derived from this study's dataset and soil guideline values from the literature. Thus, EcoSD has proven to be a practical and valuable ES concept with the potential to serve as an initial step of the tiered ERA approach. Integr Environ Assess Manag 2023;00:1–14. © 2023 SETAC

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Environmental Science,General Medicine,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3