Bayesian dose escalation with overdose and underdose control utilizing all toxicities in Phase I/II clinical trials

Author:

Tu Jieqi12,Chen Zhengjia12ORCID

Affiliation:

1. Division of Epidemiology and Biostatistics School of Public Health University of Illinois at Chicago Chicago Illinois USA

2. Biostatistics Shared Resource University of Illinois Cancer Center Chicago Illinois USA

Abstract

AbstractEscalation with overdose control (EWOC) is a commonly used Bayesian adaptive design, which controls overdosing risk while estimating maximum tolerated dose (MTD) in cancer Phase I clinical trials. In 2010, Chen and his colleagues proposed a novel toxicity scoring system to fully utilize patients’ toxicity information by using a normalized equivalent toxicity score (NETS) in the range 0 to 1 instead of a binary indicator of dose limiting toxicity (DLT). Later in 2015, by adding underdosing control into EWOC, escalation with overdose and underdose control (EWOUC) design was proposed to guarantee patients the minimum therapeutic effect of drug in Phase I/II clinical trials. In this paper, the EWOUC‐NETS design is developed by integrating the advantages of EWOUC and NETS in a Bayesian context. Moreover, both toxicity response and efficacy are treated as continuous variables to maximize trial efficiency. The dose escalation decision is based on the posterior distribution of both toxicity and efficacy outcomes, which are recursively updated with accumulated data. We compare the operation characteristics of EWOUC‐NETS and existing methods through simulation studies under five scenarios. The study results show that EWOUC‐NETS design treating toxicity and efficacy outcomes as continuous variables can increase accuracy in identifying the optimized utility dose (OUD) and provide better therapeutic effects.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3