Correcting for heterogeneity and non‐comparability bias in multicenter clinical trials with a rescaled random‐effect excess hazard model

Author:

Goungounga Juste A.123ORCID,Grafféo Nathalie145ORCID,Charvat Hadrien67ORCID,Giorgi Roch8ORCID

Affiliation:

1. INSERM IRD SESSTIM ISSPAM Aix Marseille University Marseille France

2. Registre Bourguignon des Cancers Digestifs Centre Hospitalier Universitaire de Dijon Bourgogne Université de Bourgogne Dijon France

3. Univ Rennes, CNRS, Inserm, Arènes‐UMR 6051, RSMS‐U 1309 Écoles Des Hautes Études en Santé Publique Rennes France

4. ORS PACA Observatoire régional de la santé Provence‐Alpes‐Côte d'Azur Marseille France

5. Institut Paoli‐Calmettes Unité de Biostatistique et de Méthodologie Marseille France

6. Faculty of International Liberal Arts Juntendo University Bunkyo‐ku Tokyo Japan

7. Division of International Health Policy Research, Institute for Cancer Control National Cancer Center Chuo‐ku Tokyo Japan

8. APHM INSERM IRD SESSTIM ISSPAM Hop Timone BioSTIC Biostatistique et Technologies de l'Information et de la Communication Aix Marseille University Marseille France

Abstract

AbstractIn the presence of competing causes of event occurrence (e.g., death), the interest might not only be in the overall survival but also in the so‐called net survival, that is, the hypothetical survival that would be observed if the disease under study were the only possible cause of death. Net survival estimation is commonly based on the excess hazard approach in which the hazard rate of individuals is assumed to be the sum of a disease‐specific and expected hazard rate, supposed to be correctly approximated by the mortality rates obtained from general population life tables. However, this assumption might not be realistic if the study participants are not comparable with the general population. Also, the hierarchical structure of the data can induces a correlation between the outcomes of individuals coming from the same clusters (e.g., hospital, registry). We proposed an excess hazard model that corrects simultaneously for these two sources of bias, instead of dealing with them independently as before. We assessed the performance of this new model and compared it with three similar models, using extensive simulation study, as well as an application to breast cancer data from a multicenter clinical trial. The new model performed better than the others in terms of bias, root mean square error, and empirical coverage rate. The proposed approach might be useful to account simultaneously for the hierarchical structure of the data and the non‐comparability bias in studies such as long‐term multicenter clinical trials, when there is interest in the estimation of net survival.

Funder

Institut National Du Cancer

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3