Explained variation and degrees of necessity and of sufficiency for competing risks survival data

Author:

Gleiss Andreas1ORCID,Gnant Michael2,Schemper Michael1

Affiliation:

1. Center for Medical Data Science, Institute of Clinical Biometrics Medical University of Vienna Vienna Austria

2. Comprehensive Cancer Center Medical University of Vienna Vienna Austria

Abstract

AbstractIn this contribution, the Schemper–Henderson measure of explained variation for survival outcomes is extended to accommodate competing events (CEs) in addition to events of interest. The extension is achieved by moving from the unconditional and conditional survival functions of the original measure to unconditional and conditional cumulative incidence functions, the latter obtained, for example, from Fine and Gray models. In the absence of CEs, the original measure is obtained as a special case. We define explained variation on the population level and provide two different types of estimates. Recently, the authors have achieved a multiplicative decomposition of explained variation into degrees of necessity and degrees of sufficiency. These measures are also extended to the case of competing risks survival data. A SAS macro and an R function are provided to facilitate application. Interesting empirical properties of the measures are explored on the population level and by an extensive simulation study. Advantages of the approach are exemplified by an Austrian study of breast cancer with a high proportion of CEs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3