Adaptive predictor‐set linear model: An imputation‐free method for linear regression prediction on data sets with missing values

Author:

Planterose Jiménez Benjamin1ORCID,Kayser Manfred1,Vidaki Athina1,Caliebe Amke23

Affiliation:

1. Department of Genetic Identification Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands

2. Institute of Medical Informatics and Statistics Kiel University Kiel Germany

3. University Medical Centre Schleswig‐Holstein Kiel Germany

Abstract

AbstractLinear regression (LR) is vastly used in data analysis for continuous outcomes in biomedicine and epidemiology. Despite its popularity, LR is incompatible with missing data, which frequently occur in health sciences. For parameter estimation, this shortcoming is usually resolved by complete‐case analysis or imputation. Both work‐arounds, however, are inadequate for prediction, since they either fail to predict on incomplete records or ignore missingness‐induced reduction in prediction accuracy and rely on (unrealistic) assumptions about the missing mechanism. Here, we derive adaptive predictor‐set linear model (aps‐lm), capable of making predictions for incomplete data without the need for imputation. It is derived by using a predictor‐selection operation, the Moore–Penrose pseudoinverse, and the reduced QR decomposition. aps‐lm is an LR generalization that inherently handles missing values. It is applied on a reference data set, where complete predictors and outcome are available, and yields a set of privacy‐preserving parameters. In a second stage, these are shared for making predictions of the outcome on external data sets with missing entries for predictors without imputation. Moreover, aps‐lm computes prediction errors that account for the pattern of missing values even under extreme missingness. We benchmark aps‐lm in a simulation study. aps‐lm showed greater prediction accuracy and reduced bias compared to popular imputation strategies under a wide range of scenarios including variation of sample size, goodness of fit, missing value type, and covariance structure. Finally, as a proof‐of‐principle, we apply aps‐lm in the context of epigenetic aging clocks, linear models that predict a person's biological age from epigenetic data with promising clinical applications.

Funder

Erasmus Universitair Medisch Centrum Rotterdam

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3