TITE‐gBOIN‐ET: Time‐to‐event generalized Bayesian optimal interval design to accelerate dose‐finding accounting for ordinal graded efficacy and toxicity outcomes

Author:

Takeda Kentaro1ORCID,Yamaguchi Yusuke1,Taguri Masataka2,Morita Satoshi3

Affiliation:

1. Data Science Astellas Pharma Global Development, Inc. Northbrook Illinois USA

2. Department of Health Data Science Tokyo Medical University Tokyo Japan

3. Department of Biomedical Statistics and Bioinformatics Kyoto University Graduate School of Medicine Kyoto Japan

Abstract

AbstractOne of the primary objectives of an oncology dose‐finding trial for novel therapies, such as molecular‐targeted agents and immune‐oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low or moderate‐grade toxicities than dose‐limiting toxicities. Besides, for efficacy, evaluating the overall response and long‐term stable disease in solid tumors and considering the difference between complete remission and partial remission in lymphoma are preferable. It is also essential to accelerate early‐stage trials to shorten the entire period of drug development. However, it is often challenging to make real‐time adaptive decisions due to late‐onset outcomes, fast accrual rates, and differences in outcome evaluation periods for efficacy and toxicity. To solve the issues, we propose a time‐to‐event generalized Bayesian optimal interval design to accelerate dose finding, accounting for efficacy and toxicity grades. The new design named “TITE‐gBOIN‐ET” design is model‐assisted and straightforward to implement in actual oncology dose‐finding trials. Simulation studies show that the TITE‐gBOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment while having comparable or higher performance in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3