On efficient posterior inference in normalized power prior Bayesian analysis

Author:

Han Zifei1ORCID,Zhang Qiang1,Wang Min2,Ye Keying2,Chen Ming‐Hui3

Affiliation:

1. School of Statistics University of International Business and Economics Beijing China

2. Department of Management Science and Statistics The University of Texas at San Antonio San Antonio Texas USA

3. Department of Statistics University of Connecticut Storrs Connecticut USA

Abstract

AbstractThe power prior has been widely used to discount the amount of information borrowed from historical data in the design and analysis of clinical trials. It is realized by raising the likelihood function of the historical data to a power parameter , which quantifies the heterogeneity between the historical and the new study. In a fully Bayesian approach, a natural extension is to assign a hyperprior to δ such that the posterior of δ can reflect the degree of similarity between the historical and current data. To comply with the likelihood principle, an extra normalizing factor needs to be calculated and such prior is known as the normalized power prior. However, the normalizing factor involves an integral of a prior multiplied by a fractional likelihood and needs to be computed repeatedly over different δ during the posterior sampling. This makes its use prohibitive in practice for most elaborate models. This work provides an efficient framework to implement the normalized power prior in clinical studies. It bypasses the aforementioned efforts by sampling from the power prior with and only. Such a posterior sampling procedure can facilitate the use of a random δ with adaptive borrowing capability in general models. The numerical efficiency of the proposed method is illustrated via extensive simulation studies, a toxicological study, and an oncology study.

Funder

University of International Business and Economics

University of Texas at San Antonio

National Natural Science Foundation of China

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3