A Shared‐Frailty Spatial Scan Statistic Model for Time‐to‐Event Data

Author:

Frévent Camille1,Ahmed Mohamed‐Salem12,Dabo‐Niang Sophie34,Genin Michaël1

Affiliation:

1. Université de Lille, CHU Lille, ULR 2694 ‐ METRICS: Évaluation des technologies de santé et des pratiques médicales Université de Lille Lille France

2. Alicante SARL Lesquin France

3. CNRS, UMR 8524 ‐ Laboratoire Paul Painlevé Université de Lille Lille France

4. MODAL team INRIA Lille‐Nord Europe Villeneuve‐d'Ascq France

Abstract

ABSTRACTSpatial scan statistics are well‐known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time‐to‐event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time‐to‐event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end‐stage renal disease in northern France.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3