Affiliation:
1. Department of Mathematics University of Siegen Siegen Germany
Abstract
AbstractStatistical simulation studies are becoming increasingly popular to demonstrate the performance or superiority of new computational procedures and algorithms. Despite this status quo, previous surveys of the literature have shown that the reporting of statistical simulation studies often lacks relevant information and structure. The latter applies in particular to Bayesian simulation studies, and in this paper the Bayesian simulation study framework (BASIS) is presented as a step towards improving the situation. The BASIS framework provides a structured skeleton for planning, coding, executing, analyzing, and reporting Bayesian simulation studies in biometrical research and computational statistics. It encompasses various features of previous proposals and recommendations in the methodological literature and aims to promote neutral comparison studies in statistical research. Computational aspects covered in the BASIS include algorithmic choices, Markov–chain‐Monte‐Carlo convergence diagnostics, sensitivity analyses, and Monte Carlo standard error calculations for Bayesian simulation studies. Although the BASIS framework focuses primarily on methodological research, it also provides useful guidance for researchers who rely on the results of Bayesian simulation studies or analyses, as current state‐of‐the‐art guidelines for Bayesian analyses are incorporated into the BASIS.
Subject
Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献