The Bayesian simulation study (BASIS) framework for simulation studies in statistical and methodological research

Author:

Kelter Riko1ORCID

Affiliation:

1. Department of Mathematics University of Siegen Siegen Germany

Abstract

AbstractStatistical simulation studies are becoming increasingly popular to demonstrate the performance or superiority of new computational procedures and algorithms. Despite this status quo, previous surveys of the literature have shown that the reporting of statistical simulation studies often lacks relevant information and structure. The latter applies in particular to Bayesian simulation studies, and in this paper the Bayesian simulation study framework (BASIS) is presented as a step towards improving the situation. The BASIS framework provides a structured skeleton for planning, coding, executing, analyzing, and reporting Bayesian simulation studies in biometrical research and computational statistics. It encompasses various features of previous proposals and recommendations in the methodological literature and aims to promote neutral comparison studies in statistical research. Computational aspects covered in the BASIS include algorithmic choices, Markov–chain‐Monte‐Carlo convergence diagnostics, sensitivity analyses, and Monte Carlo standard error calculations for Bayesian simulation studies. Although the BASIS framework focuses primarily on methodological research, it also provides useful guidance for researchers who rely on the results of Bayesian simulation studies or analyses, as current state‐of‐the‐art guidelines for Bayesian analyses are incorporated into the BASIS.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3