State‐space prior distribution for parameter of nonhomogeneous Poisson spatiotemporal models

Author:

Morales Fidel Ernesto Castro1

Affiliation:

1. Department of Statistics Federal University of Rio Grande do Norte Natal RN Brazil

Abstract

AbstractThis article proposes a new class of nonhomogeneous Poisson spatiotemporal model. In this approach, we use a state‐space model‐based prior distribution to handle the scale and shape parameters of the Weibull intensity function. The proposed prior distribution enables the inclusion of changes in the behavior of the intensity function over time. In defining the spatial correlation function of the model, we include anisotropy via spatial deformation. We estimate the model parameters from a Bayesian perspective, employ the Markov chain Monte Carlo approach, and validate this estimation procedure through a simulation exercise. Finally, the extreme rainfall in the southern semiarid region in northeastern Brazil is analyzed using the R10mm index. The proposed model showed better fit and prediction ability than did other nonhomogeneous Poisson spatiotemporal models available in the literature. This improvement in performance is mainly due to the flexibility of the intensity function that is achieved by allowing the incorporation, in time, of the climatic characteristics of this region.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference35 articles.

1. Using non-homogeneous Poisson models with multiple change-points to estimate the number of ozone exceedances in Mexico City

2. A new look at the statistical model identification

3. ANA. (2021).National Water and Sanitation Agency.https://www.gov.br/ana/en/

4. Climdex. (2012).Precipitation indices.http://www.climdex.org

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3