Regularized parametric survival modeling to improve risk prediction models

Author:

Hoogland J.12ORCID,Debray T. P. A.13ORCID,Crowther M. J.4ORCID,Riley R. D.5ORCID,IntHout J.6ORCID,Reitsma J. B.13ORCID,Zwinderman A. H.2ORCID

Affiliation:

1. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht Utrecht University Utrecht The Netherlands

2. Department of Epidemiology and Data Science Amsterdam University Medical Centers Amsterdam The Netherlands

3. Cochrane Netherlands, University Medical Center Utrecht Utrecht University Utrecht The Netherlands

4. Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden

5. School for Medicine Keele University Keele Staffordshire UK

6. Radboud Institute for Health Sciences (RIHS) Radboud University Medical Center Nijmegen The Netherlands

Abstract

AbstractWe propose to combine the benefits of flexible parametric survival modeling and regularization to improve risk prediction modeling in the context of time‐to‐event data. Thereto, we introduce ridge, lasso, elastic net, and group lasso penalties for both log hazard and log cumulative hazard models. The log (cumulative) hazard in these models is represented by a flexible function of time that may depend on the covariates (i.e., covariate effects may be time‐varying). We show that the optimization problem for the proposed models can be formulated as a convex optimization problem and provide a user‐friendly R implementation for model fitting and penalty parameter selection based on cross‐validation. Simulation study results show the advantage of regularization in terms of increased out‐of‐sample prediction accuracy and improved calibration and discrimination of predicted survival probabilities, especially when sample size was relatively small with respect to model complexity. An applied example illustrates the proposed methods. In summary, our work provides both a foundation for and an easily accessible implementation of regularized parametric survival modeling and suggests that it improves out‐of‐sample prediction performance.

Funder

ZonMw

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3