Drug combinations screening using a Bayesian ranking approach based on dose–response models

Author:

Boumendil Luana1ORCID,Fontaine Morgane2,Lévy Vincent13,Pacchiardi Kim24,Itzykson Raphaël25,Biard Lucie16ORCID

Affiliation:

1. Université Paris Cité INSERM U1153, Team ECSTRRA Paris France

2. Université Paris Cité Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS Paris France

3. Sorbonne Paris Nord Unité de Recherche Clinique, Hôpital Avicenne, Assistance Publique‐Hôpitaux de Paris Bobigny France

4. Laboratoire d'Hématologie Hôpital Saint‐Louis, Assistance Publique‐Hôpitaux de Paris Paris France

5. Service Hématologie Adultes Hôpital Saint‐Louis, Assistance Publique‐Hôpitaux de Paris Paris France

6. Service de Biostatistique et Information Médicale Hôpital Saint‐Louis, Assistance Publique‐Hôpitaux de Paris Paris France

Abstract

AbstractDrug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3