Feature selection of ground motion intensity measures for data‐driven surrogate modeling of structures

Author:

Ding Jia‐Yi1ORCID,Feng De‐Cheng1ORCID

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education Southeast University Nanjing China

Abstract

AbstractIn the probabilistic seismic performance assessment of structures, intensity measures (IMs) represent seismic characteristics and variations. Traditional fragility analysis method based on the assumption of linear regression requires selecting an optimal IM as input variable. By introducing machine learning (ML) techniques, nonparametric fragility analysis theoretically allows for considering all potential IMs as inputs. Nevertheless, to reduce input dimensionality and improve training efficiency, the feature selection of IMs remains imperative. This paper proposes a method to select optimal ground motion IMs for data‐driven surrogate modeling of structures. Specifically, the elastic net algorithm is employed to select the optimal multiple IMs based on the coefficient of determination and regression coefficient, differing from the efficiency and practicality emphasized in the traditional method. Using the optimal multiple IMs as input variables, several ML techniques are employed to construct surrogate models for seismic damage assessment of structures, thereby developing fragility functions, that is, the conditional probability of exceeding a damaged state given seismic intensity. A 3‐span, 6‐storey, reinforced concrete frame is utilized to illustrate the proposed methodology. The predictive performance of all ML models with the optimal multiple IMs outperforms that of the models with the commonly used IM (e.g., peak ground acceleration, PGA) as sole input and all candidate IMs as inputs. Additionally, the surrogate models with the optimal multiple IMs enable a more comprehensive seismic fragility modeling of structures under two or more IMs simultaneously, such as the fragility surface under spectral acceleration at 1.0s (Sa‐1.0s) and velocity spectrum intensity (VSI).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3