The contribution of carbon budget to masting intervals in Veratrum album populations inhabiting different elevations

Author:

Ito Yohei1ORCID,Kudo Gaku2ORCID

Affiliation:

1. Graduate School of Environmental Science Hokkaido University Sapporo 060‐0810 Japan

2. Faculty of Environmental Earth Science Hokkaido University Sapporo 060‐0810 Japan

Abstract

AbstractPremiseMast flowering/seeding is often more extreme in lower‐resource environments, such as alpine compared to lowland habitats. We studied a masting herb that had less extreme masting at higher elevations, and tested if this difference could be explained by higher photosynthetic productivity and/or lower reproductive investment at the higher‐elevation sites.MethodsWe examined the relationship between flowering intervals and carbon budget (i.e., the balance between reproductive investment and annual carbon fixation) in a masting herb, Veratrum album subsp. oxysepalum, across five lowland and six alpine populations in northern Japan. We evaluated the previous flowering histories of individual plants based on rhizome morphology and analyzed the masting patterns of individual populations. Total mass of the reproductive organs, as a proxy of reproductive investment, was compared between the lowland and alpine populations. Annual carbon fixation was estimated on the basis of photosynthetic capacity, total leaf area per plant, and seasonal transition of light availability.ResultsInterval between high‐flowering years was shorter and total reproductive investment was smaller in the alpine than in the lowland populations. Owing to its high photosynthetic capacity and continuous bright conditions, annual carbon fixation per plant was 1.5 times greater in alpine habitat than in lowland habitat. These results suggest that V. album alpine populations have shorter flowering intervals than lowland populations due to faster recovery from energy loss after reproduction.ConclusionsOur study demonstrated that masting intervals in V. album populations can be explained by habitat‐specific carbon budget balances.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3