As prey and pollinators, insects increase reproduction and allow for outcrossing in the carnivorous plant Dionaea muscipula

Author:

Hamon Laura E.12ORCID,Youngsteadt Elsa23ORCID,Irwin Rebecca E.2ORCID,Sorenson Clyde E.1ORCID

Affiliation:

1. Department of Entomology and Plant Pathology North Carolina State University Raleigh North Carolina 27695 USA

2. Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA

3. Center for Geospatial Analytics North Carolina State University Raleigh North Carolina USA

Abstract

AbstractPremiseUnderstanding the factors that limit reproductive success is a key component of plant biology. Carnivorous plants rely on insects as both nutrient sources and pollinators, providing a unique system for studying the effects of both resource and pollen limitation on plant reproduction.MethodsWe conducted a field experiment using wild‐growing Dionaea muscipula J. Ellis (Droseraceae) in which we manipulated prey and pollen in a factorial design and measured flower production, number of fruits, and number of seeds. Because understanding reproduction requires knowledge of a plant species' reproductive and pollination biology, we also examined the pollination system, per‐visit pollinator effectiveness, and pollen‐ovule (P/O) ratio of D. muscipula.ResultsPlants that received supplemental prey produced more flowers than control plants. They also had a higher overall fitness estimate (number of flowers × fruit set (total fruits/total flowers) × seeds per fruit), although this benefit was significant only when prey supplementation occurred in the previous growing season. Neither pollen supplementation nor the interaction between pollen and prey supplementation significantly affected overall plant fitness.ConclusionsThis study reinforces the reliance of D. muscipula on adequate prey capture for flower, fruit, and seed production and a mobile pollen vector for reproduction, indicating the importance of considering insects as part of an effective conservation management plan for this species.

Publisher

Wiley

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3