Plant physical defenses contribute to a latitudinal gradient in resistance to insect herbivory within a widespread perennial grass

Author:

Headrick Kevin C.1ORCID,Juenger Thomas E.1ORCID,Heckman Robert W.1ORCID

Affiliation:

1. Department of Integrative Biology University of Texas at Austin Austin TX 78712 USA

Abstract

AbstractPremiseHerbivore pressure can vary across the range of a species, resulting in different defensive strategies. If herbivory is greater at lower latitudes, plants may be better defended there, potentially driving a latitudinal gradient in defense. However, relationships that manifest across the entire range of a species may be confounded by differences within genetic subpopulations, which may obscure the drivers of these latitudinal gradients.MethodsWe grew plants of the widespread perennial grass Panicum virgatum in a common garden that included genotypes from three genetic subpopulations spanning an 18.5° latitudinal gradient. We then assessed defensive strategies of these plants by measuring two physical resistance traits—leaf mass per area (LMA) and leaf ash, a proxy for silica—and multiple measures of herbivory by caterpillars of the generalist herbivore fall armyworm (Spodoptera frugiperda).ResultsAcross all genetic subpopulations, low‐latitude plants experienced less herbivory than high‐latitude plants. Within genetic subpopulations, however, this relationship was inconsistent—the most widely distributed and phenotypically variable subpopulation (Atlantic) exhibited more consistent latitudinal trends than either of the other two subpopulations. The two physical resistance traits, LMA and leaf ash, were both highly heritable and positively associated with resistance to different measures of herbivory across all subpopulations, indicating their importance in defense against herbivores. Again, however, these relationships were inconsistent within subpopulations.ConclusionsDefensive gradients that occur across the entire species range may not arise within localized subpopulations. Thus, identifying the drivers of latitudinal gradients in herbivory defense may depend on adequately sampling the diversity within a species.

Publisher

Wiley

Subject

Plant Science,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3