Affiliation:
1. Department of Plant and Microbial Biology University of Minnesota 1479 Gortner Avenue St. Paul MN 55108 USA
Abstract
AbstractPremisePollen movement is a crucial component of dispersal in seed plants. Although pollen dispersal is well studied, methodological constraints have made it challenging to directly track pollen flow within multiple populations across landscapes. We labeled pollen with quantum dots, a new technique that overcomes past limitations, to evaluate the spatial scale of pollen dispersal and its relationship with conspecific density within 11 populations ofClarkia xantianasubsp.xantiana, a bee‐pollinated annual plant.MethodsWe used experimental arrays in two years to track pollen movement across distances of 5–35 m within nine populations and across distances of 10–70 m within two additional populations. We tested for distance decay of pollen dispersal, whether conspecific density modulated dispersal distance, and whether dispersal kernels varied among populations across an environmentally complex landscape.ResultsLabeled pollen receipt did not decline with distance over 35 m within eight of nine populations or over 70 m within either of two populations. Pollen receipt increased with conspecific density. Overall, dispersal kernels were consistent across populations.ConclusionsThe surprising uniformity in dispersal distance within different populations was likely influenced by low precipitation and plant density in our study years. This suggests that spatiotemporal variation in the abiotic environment substantially influences the extent of gene flow within and among populations.
Subject
Plant Science,Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献