Quality testing analysis of Ve‐degree based entropies by using benzene derivatives

Author:

Hui Zhi‐hao12,Rauf Abdul3ORCID,Naeem Muhammad4ORCID,Aslam Adnan5ORCID,Saleem Areesha Vania3

Affiliation:

1. School of Mathematics and Statistics Pingdingshan University Pingdingshan China

2. Henan International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5 Pingdingshan China

3. Department of Mathematics Air University Multan Campus Pakistan

4. School of Natural Sciences (SNS) National University of Sciences and Technology (NUST) Islamabad Pakistan

5. RCET University of Engineering and Technology Lahore Pakistan

Abstract

AbstractA topological index, also known as a connectedness index, is a numerical characteristic of chemical structure that is computed by using its molecular graph in theoretical chemistry. In quantitative structure‐activity relationships (QSARs), which relate a molecule's chemical structure to its physical and chemical properties, topological indices are employed. The graph entropies with topological indices were inspired by Shannon's entropy concept and became the information‐theoretic quantities for measuring the structural information of chemical graphs. The theory of graphs is useful in determining the relationship between specific properties of chemical structures using different graph entropy measures. Through these entropies, many physical and chemical characteristics, such as melting point, energy generation, Henry's Law, and molar mass of chemical compounds, can be calculated. For this, the quantitative structure‐property relationship (QSPR) models are designed using ve‐degree‐based entropies to examine some physical properties of benzene derivatives. For the computation of entropies, a Maple‐based program is developed. The QSPR study is performed using SPSS and linear regression techniques. In this work, we have observed that the redefined third Zagreb entropy, the Balaban entropy, and the Randic entropy are the best predictors. The physiochemical characteristics, namely Henry's Law and critical pressure, can be predicted by Randic entropy and Balaban entropy, respectively. The redefined third Zagreb entropy can predict four other properties: enthalpy, molar mass, ‐electronic energy, and molecular weight.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3