Intracellular Notch1 Signaling in Cancer-Associated Fibroblasts Dictates the Plasticity and Stemness of Melanoma Stem/Initiating Cells

Author:

Du Yan12,Shao Hongwei1,Moller Mecker1,Prokupets Rochelle1,Tse Yee Ting1,Liu Zhao-Jun1ORCID

Affiliation:

1. Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA

2. Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China

Abstract

Abstract Cancer stem cells (CSCs) play critical roles in cancer initiation, metastasis, recurrence, and drug resistance. Recent studies have revealed involvement of cancer-associated fibroblasts (CAFs) in regulating CSCs. However, the intracellular molecular mechanisms that determine the regulatory role of CAFs in modulating the plasticity of CSCs remain unknown. Here, we uncovered that intracellular Notch1 signaling in CAFs serves as a molecular switch, which modulates tumor heterogeneity and aggressiveness by inversely controlling stromal regulation of the plasticity and stemness of CSCs. Using mesenchymal stem cell-derived fibroblasts (MSC-DF) harboring reciprocal loss-of-function and gain-of-function Notch1 signaling, we found that MSC-DFNotch1−/− prompted cocultured melanoma cells to form more spheroids and acquire the phenotype (CD271+ and Nestin+) of melanoma stem/initiating cells (MICs), whereas MSC-DFN1IC+/+ suppressed melanoma cell sphere formation and mitigated properties of MICs. MSC-DFNotch1−/− increased stemness of CD271+ MIC, which resultantly exhibited stronger aggressiveness in vitro and in vivo, by upregulating Sox2/Oct4/Nanog expression. Consistently, when cografted with melanoma cells into NOD scid gamma (NSG) mice, MSC-DFNotch1−/− increased, but MSC-DFN1IC+/+ decreased, the amounts of CD271+ MIC in melanoma tissue. The amounts of CD271+ MIC regulated by MSC-DF carrying high or low Notch1 pathway activity is well correlated with capability of melanoma metastasis, supporting that melanoma metastasis is MIC-mediated. Our data demonstrate that intracellular Notch1 signaling in CAFs is a molecular switch dictating the plasticity and stemness of MICs, thereby regulating melanoma aggressiveness, and therefore that targeting the intracellular Notch1 signaling pathway in CAFs may present a new therapeutic strategy for melanoma. Stem Cells  2019;37:865–875

Funder

Bankhead-Coley Cancer Research Program

University of Miami

Women's Cancer Association

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference48 articles.

1. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions;Visvader;Nat Rev Cancer,2008

2. Cancer stem cells in solid tumors;Ailles;Curr Opin Biotechnol,2007

3. Melanoma;Schadendorf;Nat Rev Dis Primers,2015

4. Melanoma-initiating cells: A compass needed;Refaeli;EMBO Rep,2009

5. Testing the cancer stem cell hypothesis in melanoma: The clinics will tell;Shakhova;Cancer Lett,2013

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3