Enhancing tomato disease resistance through endogenous antifungal proteins and introduced nematode‐targeting dsRNA of biocontrol agent Bacillus velezensisHS‐3

Author:

Han Juan12,Zhu Jinchi1,Liu Shuyuan1,Sun Xuehan1,Wang Shunchang13,Miao Guopeng123ORCID

Affiliation:

1. Department of Bioengineering Huainan Normal University Huainan China

2. Institute of Digital Ecology and Health Huainan Normal University Huainan China

3. Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes Huainan Normal University Huainan China

Abstract

AbstractBACKGROUNDAs a type of biological control agent (BCA), Bacillus velezensis possesses the efficacy of inhibiting pathogenic microorganisms, promoting plant growth, and overcoming continuous cropping obstacles (CCOs). However, there is limited reporting on the optimization of the cultivation conditions for such biocontrol agents and their role as double‐stranded RNA (dsRNA) delivery vectors.RESULTSIn this study, a Bacillus velezensis strain HS‐3 was isolated from the root zone of tomato plants with in vitro anti‐Botrytis cinerea activity. The investigation into active compounds revealed that HS‐3 predominantly employs proteins with molecular weights greater than 3 kDa for its antifungal activity. Liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis identified various proteases and chitosanase, further suggesting that HS‐3 most likely employs these enzymes to degrade fungal cell walls for its antifungal effect. To optimize the production of extracellular proteins, fermentation parameters for HS‐3 were systematically optimized, leading to an optimized medium (OP‐M). HS‐3 cultured in OP‐M demonstrated enhanced capacity to assist tomato plants in withstanding CCOs. However, the presence of excessive nematodes in diseased soil resulted in the disease severity index (DSI) remaining high. An RNA interference mechanism was further introduced to HS‐3, targeting the nematode tyrosine phosphatase (TP) gene. Ultimately, HS‐3 expressing dsRNA of TP in OP‐M effectively assisted tomatoes in mitigating CCOs, reducing DSI to 2.2% and 17.8% of the control after 45 and 90 days of growth, respectively.CONCLUSIONThe advantages of Bacillus velezensis in crop disease management and the mitigation of CCOs become even more pronounced when utilizing both optimized levels of endogenous enzymes and introduced nematode‐targeting dsRNA. © 2024 Society of Chemical Industry.

Funder

Natural Science Foundation of Anhui Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3