Population structure and phylogeography of three closely related tree peonies

Author:

Liu Guangli1ORCID,Xue Ge1,Zhao Tingting1ORCID,Li Yang1,Yue Liangliang2,Song Huixing1,Liu Qinglin1

Affiliation:

1. College of Landscape Architecture Sichuan Agricultural University Chengdu China

2. National Plateau Wetlands Research Center, College of Wetlands Southwest Forestry University Kunming China

Abstract

AbstractPaeonia decomposita, Paeonia rotundiloba, and Paeonia rockii are three closely related species of Sect. Moutan is distributed in the montane area of the Eastern Hengduan Mountain region. Understanding the population history of these three tree peony species could contribute to unraveling the evolutionary patterns of undergrowth species in this hotspot area. We used one nuclear DNA marker (internal transcribed spacer region, ITS) and two chloroplast DNA markers (matK, ycf1) to reconstruct the phylogeographic pattern of the populations. In total, 228 individuals from 17 populations of the three species were analyzed in this study. Three nuclear clades (Clade I – Clade III) and four maternal clades (Clade A – Clade D) were reconstructed. Molecular dating suggested that young lineages diverged during the late Pliocene and early Pleistocene, younger than the uplift of the Hengduan Mountains but older than the last glacial maximum (LGM). Significant population and phylogeographic structures were detected at both markers. Furthermore, the populations of these tree peonies were overall at equilibrium during the climatic oscillations of the Pleistocene. The simulated palaeoranges of the three species during the LGM period mostly overlapped, which could have led to cross‐breeding events. We propose an evolutionary scenario in which mountain orogenesis around the Hengduan Mountain area triggered parapatric isolation between maternal lineages of tree peonies. Subsequent climatic fluctuations drove migration and range recontact of these populations along the valleys. This detailed evolutionary history provides new insights into the phylogeographic pattern of species from mountain‐valley systems.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CORRIGENDUM;Ecology and Evolution;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3