Fire severity as a key determinant of aboveground and belowground biological community recovery in managed even‐aged boreal forests

Author:

Pérez‐Izquierdo Leticia1ORCID,Bengtsson Jan2ORCID,Clemmensen Karina E.3ORCID,Granath Gustaf4ORCID,Gundale Michael J.5ORCID,Ibáñez Theresa S.6ORCID,Lindahl Björn D.1ORCID,Strengbom Joachim2ORCID,Taylor Astrid2ORCID,Viketoft Maria2ORCID,Wardle David A.7ORCID,Nilsson Marie‐Charlotte5ORCID

Affiliation:

1. Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden

2. Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden

3. Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden

4. Department of Ecology and Genetics Uppsala University Uppsala Sweden

5. Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden

6. Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden

7. Department of Ecology and Environmental Science Umeå University Umeå Sweden

Abstract

Abstract Changes in fire regime of boreal forests in response to climate warming are expected to impact postfire recovery. However, quantitative data on how managed forests sustain and recover from recent fire disturbance are limited. Two years after a large wildfire in managed even‐aged boreal forests in Sweden, we investigated how recovery of aboveground and belowground communities, that is, understory vegetation and soil microbial and faunal communities, responded to variation in the severity of soil (i.e., consumption of soil organic matter) and canopy fires (i.e., tree mortality). While fire overall enhanced diversity of understory vegetation through colonization of fire adapted plant species, it reduced the abundance and diversity of soil biota. We observed contrasting effects of tree‐ and soil‐related fire severity on survival and recovery of understory vegetation and soil biological communities. Severe fires that killed overstory Pinus sylvestris promoted a successional stage dominated by the mosses Ceratodon purpureus and Polytrichum juniperinum, but reduced regeneration of tree seedlings and disfavored the ericaceous dwarf‐shrub Vaccinium vitis‐idaea and the grass Deschampsia flexuosa. Moreover, high tree mortality from fire reduced fungal biomass and changed fungal community composition, in particular that of ectomycorrhizal fungi, and reduced the fungivorous soil Oribatida. In contrast, soil‐related fire severity had little impact on vegetation composition, fungal communities, and soil animals. Bacterial communities responded to both tree‐ and soil‐related fire severity. Synthesis: Our results 2 years postfire suggest that a change in fire regime from a historically low‐severity ground fire regime, with fires that mainly burns into the soil organic layer, to a stand‐replacing fire regime with a high degree of tree mortality, as may be expected with climate change, is likely to impact the short‐term recovery of stand structure and above‐ and belowground species composition of even‐aged P. sylvestris boreal forests.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3