Partitioning and integrating of plant traits and phylogeny in assessing diversity along secondary forest succession in Loess Plateau of China

Author:

Chai Yongfu12ORCID,Qiu Shen12,Wang Kaiyue12,Xu Jinshi12,Guo Yaoxin12ORCID,Wang Mao3ORCID,Yue Ming12,Wang Mingjie4,Zhu Jiangang4

Affiliation:

1. Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University Xi'an China

2. School of Life Sciences Northwest University Xi'an China

3. College of Grassland and Environment Sciences Xinjiang Agricultural University Urumchi China

4. Shuanglong State‐owned Ecological Experimental Forest Station of Qiaoshan State‐owned Forestry Administration of Yan'an City Yan'an China

Abstract

AbstractAssessing plant diversity during community succession based on plant trait and phylogenetic features within a community (alpha scale) and among communities (beta scale) could improve our understanding of community succession mechanism. However, whether changes of community functional diversity at alpha and beta scale are structured by different traits and whether integrating plant traits and phylogeny can enhance the ability in detecting diversity pattern have not been studied in detail. Thirty plots representing different successional stages were established on the Loess Plateau of China and 15 functional traits were measured for all coexisting species. We first analyzed the functional alpha and beta diversity along succession by decomposing species trait into alpha and beta components and then integrated key traits with phylogenetic information to explore their roles in shaping species turnover during community succession. We found that functional alpha diversity increased along successional stages and was structured by morphological traits, while beta diversity decreased during succession and was more structured by stoichiometry traits. Phylogenetic alpha diversity showed congruent pattern with functional alpha diversity because of phylogenetic conservation of trait alpha components (variation within community), while beta diversity showed incongruent pattern due to phylogenetic randomness of trait beta components (variation among communities). Furthermore, only integrating relatively conserved traits (plant height and seed mass) and phylogenetic information can raise the detecting ability in assessing diversity change. Overall, our results reveal the increasing niche differentiation within community and functional convergence among communities with succession process, indicating the importance of matching traits with scale in studying community functional diversity and the asymmetry of traits and phylogeny in reflecting species ecological differences under long‐term selection pressures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3