Environmental DNA metabarcoding revealed the impacts of anthropogenic activities on phytoplankton diversity in Dianchi Lake and its three inflow rivers

Author:

Lin Yuanyuan1ORCID,Zhong Wenjun2ORCID,Zhang Xiaowei2,Zhou Xiaohua1,He Liwei1,Lv Jiacheng1,Zhao Zheng1

Affiliation:

1. Academician Workstation for Ecological Health Assessment and Rehabilitation of Rivers and Lakes in Kunming, Key Laboratory of River and Lake Ecological Health Assessment and Restoration in Yunnan Province, Kunming Dianchi Lake Environmental Protection Collaborative Research Center Kunming University Kunming China

2. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University Nanjing China

Abstract

AbstractPhytoplankton diversity is closely related to environmental variables and has been widely used in ecological health assessment of rivers and lakes. Combining advantages of DNA‐based identification and high‐throughput sequencing technology, environmental DNA (eDNA) metabarcoding permits a new measurement for biodiversity monitoring in aquatic ecosystems. However, it had rarely been used to explore the variability and similarity of phytoplankton diversity between lake and its inflow rivers and the effects of environmental variables on phytoplankton. This study utilized eDNA metabarcoding to investigate the spatial distribution of phytoplankton and the impacts of environmental variables on the phytoplankton diversity in Dianchi Lake (one of the most polluted urban lakes in China) and its main inflow rivers (Panlong River, Baoxiang River, and Chai River). A total of 243 distinct phytoplankton taxa were detected, covering 9 phyla, 30 classes, 84 orders, and 132 families, and the taxonomic richness of rivers was higher than that of Dianchi Lake. Distinct biodiversity patterns (e.g., community structure, dominant taxon, ɑ‐diversity) were exhibited among Dianchi Lake and its three inflow rivers, but similar biodiversity patterns were also observed in Dianchi Lake and the estuarine sites. The patterns of phytoplankton diversity were closely related to environmental variables, which were associated with pollution sources from different anthropogenic activities (e.g., urbanization, water diversion, industrial and agricultural activities). The primary environmental variables correlated with phytoplankton diversity varied in different habitats. The total phosphorus (TP) and chemical oxygen demand (COD) positively correlated with the phytoplankton community structures in Dianchi Lake, whereas negatively correlated in Panlong River and Baoxiang River. The total nitrogen (TN) positively correlated with the phytoplankton community structures in Baoxiang River and Chai River but negatively correlated in Dianchi Lake. Overall, this study provides insights on the phytoplankton diversity monitoring and the conservation of its diversity and healthy management of Dianchi Lake.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3