Affiliation:
1. Department of Materials Physics and Chemistry State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources Environment and Materials Guangxi University Nanning China
Abstract
AbstractRecently, many lead‐free metal halides with diverse structures and highly efficient emission have been reported. However, their poor stability and single‐mode emission color severely limit their applications. Herein, three homologous Sb3+‐doped zero‐dimensional (0D) air‐stable Sn(IV)‐based metal halides with different crystal structures were developed by inserting a single organic ligand into SnCl4lattice, which brings different optical properties. Under photoexcitation, (C25H22P)SnCl5@Sb·CH4O (Sb3+−1) does not emit light, (C25H22P)2SnCl6@Sb‐α (Sb3+−2α) shines bright yellow emission with a photoluminescence quantum yield (PLQY) of 92%, and (C25H22P)2SnCl6@Sb‐β (Sb3+−2β) exhibits intense red emission with a PLQY of 78%. The above three compounds show quite different optical properties should be due to their different crystal structures and the lattice distortions. Particularly,Sb3+−1can be successfully converted intoSb3+−2αunder the treatment of C25H22PCl solution, accompanied by a transition from nonemission to efficient yellow emission, serving as a “turn‐on” photoluminescence (PL) switching. Parallelly, a reversible structure conversion betweenSb3+−2αandSb3+−2βwas witnessed after dichloromethane or volatilization treatment, accompanied by yellow and red emission switching. Thereby, a triple‐mode tunable PL switching of off–onI–onIIcan be constructed in Sb3+‐doped Sn(IV)‐based compounds. Finally, we demonstrated the as‐synthesized compounds in fluorescent anticounterfeiting, information encryption, and optical logic gates.
Subject
General Medicine,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献