Affiliation:
1. Department of Chemistry Indian Institute of Technology Kharagpur India
2. Department of Chemistry Birla Institute of Technology Mesra Ranchi Jharkhand India
Abstract
AbstractCO2 reduction is appealing for the long‐term production of high‐value fuels and chemicals. Herein, using density functional theory (DFT) based calculations, we study the CO2 reduction pathway to formic acid using aluminum hydride and phosphine derivatives. Our primary focus is on aluminum hydride derivatives, aimed at improving the efficiency of the CO2 reduction process. Substituents with σ‐donating properties at the aluminum center are discovered to lower the activation barriers. We demonstrate how di‐tert‐butylphosphine oxide (LB‐O)/di‐tert‐butylphosphine sulfide (LB‐S)/di‐tert‐butylphosphanimine (LB‐N) work together with aluminum hydride to facilitate CO2 reduction process and generate in‐situ frustrated Lewis pairs (FLPs), such as FLP‐O, FLP‐S, and FLP‐N. The activation strain model (ASM) analysis reveals the significance of strain energy in determining activation barriers. EDA‐NOCV and PIO analyses elucidate the orbital interactions at the corresponding transition states. Furthermore, the study delves into the activation of various small molecules, such as dihydrogen, acetylene, ethylene, carbon dioxide, nitrous oxide, and acetonitrile, using those in‐situ generated FLPs. The study highlights the low activation barriers and emphasizes the potential for small molecule activation in this context.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献