Ultrasmall iron‐gallic acid coordination polymer nanodots with antioxidative neuroprotection for PET/MR imaging‐guided ischemia stroke therapy

Author:

Du Yujing1,Huo Yan1,Yang Qi1,Han Zhihui2,Hou Linqian2,Cui Bixiao3,Fan Kevin4,Qiu Yongkang1,Chen Zhao1,Huang Wenpeng1,Lu Jie3,Cheng Liang2ORCID,Cai Weibo4ORCID,Kang Lei1

Affiliation:

1. Department of Nuclear Medicine Peking University First Hospital Beijing China

2. Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Jiangsu China

3. Department of Radiology and Nuclear Medicine Xuanwu Hospital Capital Medical University Beijing China

4. Departments of Radiology and Medical Physics University of Wisconsin‐Madison Wisconsin USA

Abstract

AbstractOxidative stress from reactive oxygen species (ROS) is a reperfusion injury factor that can lead to cell damage and death. Here, ultrasmall iron‐gallic acid coordination polymer nanodots (Fe‐GA CPNs) were developed as antioxidative neuroprotectors for ischemia stroke therapy guided by PET/MR imaging. As proven by the electron spin resonance spectrum, the ultrasmall Fe‐GA CPNs with ultrasmall size, scavenged ROS efficiently. In vitro experiments revealed that Fe‐GA CPNs could protect cell viability after being treated with hydrogen peroxide (H2O2) and displayed the effective elimination of ROS by Fe‐GA CPNs, which subsequently restores oxidation balance. When analyzing the middle cerebral artery occlusion model, the neurologic damage displayed by PET/MR imaging revealed a distinct recovery after treatment with Fe‐GA CPNs, which was proved by 2,3,5‐triphenyl tetrazolium chloride staining. Furthermore, immunohistochemistry staining indicated that Fe‐GA CPNs inhibited apoptosis through protein kinase B (Akt) restoration, whereas western blot and immunofluorescence indicated the activation of the nuclear factor erythroid 2‐related factor 2 (Nrf2) and heme oxygenase‐1 (HO‐1) pathway following Fe‐GA CPNs application. Therefore, Fe‐GA CPNs exhibit an impressive antioxidative and neuroprotective role via redox homeostasis recovery by Akt and Nrf2/HO‐1 pathway activation, revealing its potential for clinical ischemia stroke treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3