Gel/hydrogel‐based in situ biomaterial platforms for cancer postoperative treatment and recovery

Author:

Feng Yuzhao12,Zhang Zhan12,Tang Wei3,Dai Yunlu12ORCID

Affiliation:

1. Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR China

2. MoE Frontiers Science Center for Precision Oncology University of Macau Macau SAR China

3. Departments of Pharmacy and Diagnostic Radiology Nanomedicine Translational Research Program Faculty of Science and Yong Loo Lin School of Medicine National University of Singapore Singapore

Abstract

AbstractTumor surgical resection is the major strategy for cancer treatment. Meanwhile, perioperative treatment especially the postoperative adjuvant anticancer strategies play essential roles in satisfying therapeutic results and rapid recovery. Postoperative tumor recurrence, metastasis, bleeding, inter‐tissue adhesion, infection, and delayed wound healing are vital risks that could lead to poor prognosis or even treatment failure. Therefore, methods targeting these postoperative complications are in desperate need. In situ biomaterial‐based drug delivery platforms are promising candidates for postoperative treatment and recovery, resulting from their excellent properties including good biocompatibility, adaptive shape, limited systemic effect, designable function, and easy drug loading. In this review, we focus on introducing the gel/hydrogel‐based in situ biomaterial platforms involving their properties, advantages, and synthesis procedures. Based on the loaded contents in the gel/hydrogel such as anticancer drugs, immunologic agents, cell components, and multifunctional nanoparticles, we further discuss the applications of the in situ platforms for postoperative tumor recurrence and metastasis inhibition. Finally, other functions aiming at fast postoperative recovery were introduced, including hemostasis, antibacterial infection, adhesion prevention, tissue repair, and wound healing. In conclusion, gel/hydrogel is a developing and promising platform for postoperative treatment, exhibiting gratifying therapeutic effects and inconspicuous toxicity to normal tissues, which deserves further research and exploration.

Funder

National Natural Science Foundation of China

National University of Singapore

Science, Technology and Innovation Commission of Shenzhen Municipality

Universidade de Macau

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3