Models of light absorption enhancement in perovskite solar cells by plasmonic nanoparticles

Author:

Zheng Daming12ORCID,Pauporté Thierry2ORCID,Schwob Catherine1,Coolen Laurent1

Affiliation:

1. Sorbonne Université CNRS, Institut de NanoSciences de Paris, INSP Paris France

2. Chimie ParisTech PSL Research University CNRS, Institut de Recherche de Chimie Paris (IRCP), Curie Paris France

Abstract

AbstractNumerous experiments have demonstrated improvements on the efficiency of perovskite solar cells by introducing plasmonic nanoparticles, however, the underlying mechanisms are still not clear: the particles may enhance light absorption and scattering, as well as charge separation and transfer, or the perovskite's crystalline quality. Eventually, it can still be debated whether unambiguous plasmonic increase of light absorption has indeed been achieved. Here, various optical models are employed to provide a physical understanding of the relevant parameters in plasmonic perovskite cells and the conditions under which light absorption may be enhanced by plasmonic mechanisms. By applying the recent generalized Mie theory to gold nanospheres in perovskite, it is shown that their plasmon resonance is conveniently located in the 650–800 nm wavelength range, where absorption enhancement is most needed. It is evaluated for which active layer thickness and nanoparticle concentration a significant enhancement can be expected. Finally, the experimental literature on plasmonic perovskite solar cells is analyzed in light of this theoretical description. It is estimated that only a tiny portion of these reports can be associated with light absorption and point out the importance of reporting the perovskite thickness and nanoparticle concentration in order to assess the presence of plasmonic effects.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3